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Swing basics
- UI toolkit for Java applications

- What is a lightweight component?

- Very flexible 

- Provides a lot of hooks for custom behavior

- Not trivial to implement

- Heavyweight counterparts – AWT and SWT
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Swing painting pipeline
- Three major “participants”

- JComponent

- RepaintManager

- ComponentUI

- Provide various hooks to customize behavior

- Vary in flexibility, robustness and ease of use
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Swing painting pipeline – part I

addDirtyRegion()repaint()

•Coalesce repaints

•Create an event

•Queue event on EDT

JComponent RepaintManager

EDT gets to the 

queued event
paintDirtyRegions()paintImmediately()

•Opacity checks

•Double-buffering

paint()
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Swing painting pipeline – part II

update()

paintBorder()

paintComponent()

paint()

paintChildren()

paint()

JComponent ComponentUI



Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing pipeline hooks
- JComponent

- Override paint or paintComponent

- Or even repaint or paintImmediately

- RepaintManager

- Install a custom implementation (singleton)

- ComponentUI

- Provide custom painting for a specific component class
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- Translucency

- Non-rectangular components

- Layering

- Image filtering

- Animation

What we can achieve?
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Swing painting pipeline hooks

addDirtyRegion()repaint()

•Coalesce repaints

•Create an event

•Queue event on EDT

JComponent RepaintManager

EDT gets to the 

queued event
paintDirtyRegions()paintImmediately()

•Opacity checks

•Double-buffering

paint()
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RepaintManager example
- SwingX project

- JXPanel that provides translucency

- setAlpha(float)

- using RepaintManagerX – see code
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class JXPanel {    

public void setAlpha(float alpha) {

if (alpha > 0f && alpha < 1f) {

...

RepaintManager.setCurrentManager(

new RepaintManagerX());

}

}

There can be only one (singleton)
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Swing painting pipeline hooks

addDirtyRegion()repaint()

•Coalesce repaints

•Create an event

•Queue event on EDT

JComponent RepaintManager

EDT gets to the 

queued event
paintDirtyRegions()paintImmediately()

•Opacity checks

•Double-buffering

paint()
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- setOpaque(false) == “draw stuff behind me”

- Useful for translucent or non-rectangular 

components 

- setOpaque(true) == “I’ll handle it”

- During repainting of an opaque component 

Swing does not repaint any components behind

Opacity basics - setOpaque
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- UIs changes are immediate

- Showing / hiding a control

- Moving a control to new location

- Tab switch

- Solution – use transitions (cross fades, fly-in / out)

- Making controls non-opaque to enable the transition effects

Transition effects using opacity
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DEMO
Transition layout demo
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- Play with opacity (set to false during animation cycle)

- Set translucency (for fades)

- Custom layout manager (for sliding effects)

TransitionLayoutManager.getInstance().
track(myTabbedPane, true);

TransitionLayoutManager.getInstance().
track(myPanel, true);

Transition layout manager
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- Remains visible and has the same bounds

- Remains visible and has different bounds

- Becomes invisible

- Added or becomes visible

- Remains invisible

Transition scenarios
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Swing painting pipeline hooks

update()

paintBorder()

paintComponent()

paint()

paintChildren()

paint()

JComponent ComponentUI



Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

frame.setGlassPane(new CustomGlassPanel());

frame.getGlassPane().setVisible(true);

- Painting over all the components

Glass pane basics
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- Pros

- Does not affect component's state

- Cons

- Global resource (for a frame)

- Everything is repainted (performance)

Glass pane
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- It is a component wrapper like JScrollPane

- You have access to the wrapped component's state

- It does not use glassPane from the frame

- It has its own a transparent panel on the top

- JXLayer.paint() delegates all painting to the painter

- A flexible way to modify component's appearance

JXLayer overview
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- Painters API

- Image filtering

- Translucency 

- PainterModel.setAlpha(float)

- Non-rectangular components

- MouseEvents filtering

JXLayer overview
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Swing painting pipeline hooks

update()

paintBorder()   [*]

paintComponent()

paint()

paintChildren() [*]

paint()

JComponent ComponentUI
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- UI delegates – classes responsible for painting Swing 

components.

- JPanel – PanelUI delegate [*]

- JButton – ButtonUI delegate [*]

- ... (41 different UI delegates)

- Provide flexible control over painting different visual layers 

of Swing components

UI delegates basics
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update()

paintBorder()

paintComponent()

paint()

paintIcon()

paintText()
paintFocus()

paintChildren()

paint()

JComponent ButtonUI

UI delegate flow
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- Repaint manager and glass pane - much higher level

- UI delegate can

- Add drop shadow to the button text

- And get all the rest from the core implementation

- Opens the field to a wide array of effects

- Ghost images / springs

- Ripples

- ...

Alternatives
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DEMO
Ghost effects
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Ghost effects sequence
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- Custom painting code in:

- ButtonUI.paintIcon() or

- ButtonUI.update()

update()

paintIcon()
paintText()
paintFocus()

paint()

Ghost effects implementation
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Icon ghosting over multiple components

Ghost effects eye candy
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- Pros

- Minimal changes in the application code. 

- No need for custom painting code

- Available under multiple look and feels (use 

bytecode injection)

- Cons

- Custom paintComponent implementations

Ghost effects
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DEMO
Rainbow demo

https://rainbow.dev.java.net

Sources + WebStart link
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- JXLayer project https://swinghelper.dev.java.net/

- Laf-Widget project http://laf-widget.dev.java.net

- SwingX project http://swingx.dev.java.net/

- Old blog http://weblogs.java.net/blog/kirillcool/

- New blog http://www.pushing-pixels.org

Links

https://swinghelper.dev.java.net/
https://swinghelper.dev.java.net/
https://swinghelper.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://swingx.dev.java.net/
http://swingx.dev.java.net/
http://laf-widget.dev.java.net/
http://weblogs.java.net/blog/kirillcool/
http://weblogs.java.net/blog/kirillcool/
http://weblogs.java.net/blog/kirillcool/
http://weblogs.java.net/blog/kirillcool/
http://www.pushing-pixels.org/
http://www.pushing-pixels.org/
http://www.pushing-pixels.org/


Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Q&A
Kirill Grouchnikov

kirillcool@yahoo.com


