
Advanced Effects

in Java Desktop

Applications

Kirill Grouchnikov, Senior Software

Engineer, Amdocs

kirillcool@yahoo.com

http://www.pushing-pixels.org

OSCON 2007

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Agenda
•Swing pipeline

•Hooking into the pipeline

•RepaintManager

•Playing with opacity

•Glass pane

•Layering in UI delegates

•Rainbow demo

•Q&A

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing basics
- UI toolkit for Java applications

- What is a lightweight component?

- Very flexible

- Provides a lot of hooks for custom behavior

- Not trivial to implement

- Heavyweight counterparts – AWT and SWT

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline
- Three major “participants”

- JComponent

- RepaintManager

- ComponentUI

- Provide various hooks to customize behavior

- Vary in flexibility, robustness and ease of use

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline – part I

addDirtyRegion()repaint()

•Coalesce repaints

•Create an event

•Queue event on EDT

JComponent RepaintManager

EDT gets to the

queued event
paintDirtyRegions()paintImmediately()

•Opacity checks

•Double-buffering

paint()

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline – part II

update()

paintBorder()

paintComponent()

paint()

paintChildren()

paint()

JComponent ComponentUI

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing pipeline hooks
- JComponent

- Override paint or paintComponent

- Or even repaint or paintImmediately

- RepaintManager

- Install a custom implementation (singleton)

- ComponentUI

- Provide custom painting for a specific component class

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Translucency

- Non-rectangular components

- Layering

- Image filtering

- Animation

What we can achieve?

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Agenda
•Swing pipeline

•Hooking into the pipeline

•RepaintManager

•Playing with opacity

•Glass pane

•Layering in UI delegates

•Rainbow demo

•Q&A

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline hooks

addDirtyRegion()repaint()

•Coalesce repaints

•Create an event

•Queue event on EDT

JComponent RepaintManager

EDT gets to the

queued event
paintDirtyRegions()paintImmediately()

•Opacity checks

•Double-buffering

paint()

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

RepaintManager example
- SwingX project

- JXPanel that provides translucency

- setAlpha(float)

- using RepaintManagerX – see code

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

class JXPanel {

public void setAlpha(float alpha) {

if (alpha > 0f && alpha < 1f) {

...

RepaintManager.setCurrentManager(

new RepaintManagerX());

}

}

There can be only one (singleton)

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Agenda
•Swing pipeline

•Hooking into the pipeline

•RepaintManager

•Playing with opacity

•Glass pane

•Layering in UI delegates

•Rainbow demo

•Q&A

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline hooks

addDirtyRegion()repaint()

•Coalesce repaints

•Create an event

•Queue event on EDT

JComponent RepaintManager

EDT gets to the

queued event
paintDirtyRegions()paintImmediately()

•Opacity checks

•Double-buffering

paint()

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- setOpaque(false) == “draw stuff behind me”

- Useful for translucent or non-rectangular

components

- setOpaque(true) == “I’ll handle it”

- During repainting of an opaque component

Swing does not repaint any components behind

Opacity basics - setOpaque

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- UIs changes are immediate

- Showing / hiding a control

- Moving a control to new location

- Tab switch

- Solution – use transitions (cross fades, fly-in / out)

- Making controls non-opaque to enable the transition effects

Transition effects using opacity

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

DEMO
Transition layout demo

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Play with opacity (set to false during animation cycle)

- Set translucency (for fades)

- Custom layout manager (for sliding effects)

TransitionLayoutManager.getInstance().
track(myTabbedPane, true);

TransitionLayoutManager.getInstance().
track(myPanel, true);

Transition layout manager

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Remains visible and has the same bounds

- Remains visible and has different bounds

- Becomes invisible

- Added or becomes visible

- Remains invisible

Transition scenarios

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Agenda
•Swing pipeline

•Hooking into the pipeline

•RepaintManager

•Playing with opacity

•Glass pane

•Layering in UI delegates

•Rainbow demo

•Q&A

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline hooks

update()

paintBorder()

paintComponent()

paint()

paintChildren()

paint()

JComponent ComponentUI

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

frame.setGlassPane(new CustomGlassPanel());

frame.getGlassPane().setVisible(true);

- Painting over all the components

Glass pane basics

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Pros

- Does not affect component's state

- Cons

- Global resource (for a frame)

- Everything is repainted (performance)

Glass pane

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- It is a component wrapper like JScrollPane

- You have access to the wrapped component's state

- It does not use glassPane from the frame

- It has its own a transparent panel on the top

- JXLayer.paint() delegates all painting to the painter

- A flexible way to modify component's appearance

JXLayer overview

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Painters API

- Image filtering

- Translucency

- PainterModel.setAlpha(float)

- Non-rectangular components

- MouseEvents filtering

JXLayer overview

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Agenda
•Swing pipeline

•Hooking into the pipeline

•RepaintManager

•Playing with opacity

•Glass pane

•Layering in UI delegates

•Rainbow demo

•Q&A

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Swing painting pipeline hooks

update()

paintBorder() [*]

paintComponent()

paint()

paintChildren() [*]

paint()

JComponent ComponentUI

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- UI delegates – classes responsible for painting Swing

components.

- JPanel – PanelUI delegate [*]

- JButton – ButtonUI delegate [*]

- ... (41 different UI delegates)

- Provide flexible control over painting different visual layers

of Swing components

UI delegates basics

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

update()

paintBorder()

paintComponent()

paint()

paintIcon()

paintText()
paintFocus()

paintChildren()

paint()

JComponent ButtonUI

UI delegate flow

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Repaint manager and glass pane - much higher level

- UI delegate can

- Add drop shadow to the button text

- And get all the rest from the core implementation

- Opens the field to a wide array of effects

- Ghost images / springs

- Ripples

- ...

Alternatives

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

DEMO
Ghost effects

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Ghost effects sequence

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Custom painting code in:

- ButtonUI.paintIcon() or

- ButtonUI.update()

update()

paintIcon()
paintText()
paintFocus()

paint()

Ghost effects implementation

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Icon ghosting over multiple components

Ghost effects eye candy

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- Pros

- Minimal changes in the application code.

- No need for custom painting code

- Available under multiple look and feels (use

bytecode injection)

- Cons

- Custom paintComponent implementations

Ghost effects

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Agenda
•Swing pipeline

•Hooking into the pipeline

•RepaintManager

•Playing with opacity

•Glass pane

•Layering in UI delegates

•Rainbow demo

•Q&A

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

DEMO
Rainbow demo

https://rainbow.dev.java.net

Sources + WebStart link

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

- JXLayer project https://swinghelper.dev.java.net/

- Laf-Widget project http://laf-widget.dev.java.net

- SwingX project http://swingx.dev.java.net/

- Old blog http://weblogs.java.net/blog/kirillcool/

- New blog http://www.pushing-pixels.org

Links

https://swinghelper.dev.java.net/
https://swinghelper.dev.java.net/
https://swinghelper.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://laf-widget.dev.java.net/
http://swingx.dev.java.net/
http://swingx.dev.java.net/
http://laf-widget.dev.java.net/
http://weblogs.java.net/blog/kirillcool/
http://weblogs.java.net/blog/kirillcool/
http://weblogs.java.net/blog/kirillcool/
http://weblogs.java.net/blog/kirillcool/
http://www.pushing-pixels.org/
http://www.pushing-pixels.org/
http://www.pushing-pixels.org/

Kirill Grouchnikov, Advanced Effects in Java Desktop Applications

Q&A
Kirill Grouchnikov

kirillcool@yahoo.com

