
2007 JavaOneSM Conference | Session TS-3414 |

TS-3414

Bringing Life to Swing
Desktop Applications
Alexander Potochkin
Sun Microsystems
Kirill Grouchnikov
Amdocs Inc.

2007 JavaOneSM Conference | Session TS-3414 | 2

Presentation Goal

Learn advanced painting techniques
to enrich your Swing applications

2007 JavaOneSM Conference | Session TS-3414 | 3

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 4

Introduction
Advanced Effects

● Translucency
● Non-rectangular components
● Layering
● Image filtering
● Animation

2007 JavaOneSM Conference | Session TS-3414 | 5

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 6

● Put setOpaque(false) in constructor
for translucent components

● Override paint()
● To change the graphics state of the superclass
● To paint over the whole component
● Don’t forget to call super.paint()

● Override contains()
● For non-rectangular components

Implementation
Custom Components

2007 JavaOneSM Conference | Session TS-3414 | 7

setOpaque()
Custom Components

● setOpaque(false) == “draw stuff behind me”
● Useful for translucent or non-rectangular components

● setOpaque(true) == “I’ll handle it”
● During repainting of an opaque component

Swing doesn’t repaint any components behind
● If component is entirely opaque, this method

doesn’t change its visual appearance

2007 JavaOneSM Conference | Session TS-3414 | 8

paint()
Custom Components

● Responsible for painting the whole component
● Can be used to render a component to an image

public void paint(Graphics g) {
 paintComponent(g);
 paintBorder(g); paintChildren(g);}

2007 JavaOneSM Conference | Session TS-3414 | 9

contains()
Custom Components

● Override it to implement a
custom filter for MouseEvents

● If contains() returns false a MouseEvent
with x,y coordinates will be rejected
otherwise accepted

public boolean contains(int x, int y) {
 return super.contains(x, y);}

2007 JavaOneSM Conference | Session TS-3414 | 10

Non-rectangular component
Custom Components
public class OvalButton extends JButton {
 public OvalButton(String text) {
 super(text);
 setOpaque(false);
 }

 // Define the new shape for component
 private Shape getShape() {
 return new Ellipse2D.Float

(0, 0, getWidth()/2, getHeight());
 }

2007 JavaOneSM Conference | Session TS-3414 | 11

Non-rectangular component
Custom Components
 // Clip the graphics
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D) g;
 g2.setClip(getShape());
 super.paint(g);
 }

 // Skip mouse events outside the shape
 public boolean contains(int x, int y) {
 return getShape().contains(x, y);
 }
}

2007 JavaOneSM Conference | Session TS-3414 | 12

Advanced effects
Custom Components

● Simple custom components can support any
layering, translucency, transparency etc…

● Some components may contain child
components (JComboBox, JTable or JPanel)

● Effects should work for compound
components as well

● Let’s try the more complex scenario

2007 JavaOneSM Conference | Session TS-3414 | 13

Non-rectangular container—the problem
Custom Components

JPanel panel = new OvalPanel();panel.setBackground(Color.GREEN);
frame.add(panel);panel.add(new JButton("Surprise!"));

2007 JavaOneSM Conference | Session TS-3414 | 14

Points to remember
Custom Components

● You can implement any effect for a custom
component

● Generally, container’s paint() doesn’t get
called when a children is repainted itself

● More efforts should be made to expand effects
on child components

2007 JavaOneSM Conference | Session TS-3414 | 15

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 16

Introduction
Playing With Opacity

● By default, all controls are opaque
● An opaque control fills every pixel in its bounds
● Doesn’t allow proper painting of overlapped

components

2007 JavaOneSM Conference | Session TS-3414 | 17

Points to remember
Playing With Opacity

● Is a boolean setting—doesn’t provide built-in
support for custom translucency values

● Might interfere with existing application logic
(property change listeners)

● Component might look different depending
on opaque state
JLabel label = new JLabel("Opaque");label.setBackground(Color.MAGENTA);frame.add(label);
label.setText("Non Opaque");label.setOpaque(false);

2007 JavaOneSM Conference | Session TS-3414 | 18

Using opacity for transition effects
Transition Effects

● Problem—UIs changes are immediate
● Showing/hiding a control
● Moving a control to new location
● Tab switch

● Solution—use transitions
(cross fades, fly-in/out)

● Making controls non-opaque to enable the
transition effects

2007 JavaOneSM Conference | Session TS-3414 | 19

DEMO
Transition Layout Demo

2007 JavaOneSM Conference | Session TS-3414 | 20

Laf-Widget solution—available to look and feels
Transition Effects

● Implemented animation/transition effects
● Play with opacity (set to false during animation cycle)
● Set translucency (for fades)
● Support in the UI delegates (bytecode injection)
● Custom layout manager (for sliding effects)

JTabbedPane myTabbedPane = ...;
TransitionLayoutManager.getInstance().

track(myTabbedPane, true);
JPanel myPanel = ...;
TransitionLayoutManager.getInstance().

track(myPanel, true);

2007 JavaOneSM Conference | Session TS-3414 | 21

Possible scenarios
Transition Effects

● Remains visible and has the same bounds
● Remains visible and has different bounds
● Becomes invisible
● Added or becomes visible
● Remains invisible

2007 JavaOneSM Conference | Session TS-3414 | 22

Many issues
Transition Effects

● Components’ borders—not painted by UI
delegates

● JDesktopPane—ignores opacity setting
● Playing with layout manager, opacity and visibility
● Removed components
● Requires changes in some LAF methods—

to respect the translucency

2007 JavaOneSM Conference | Session TS-3414 | 23

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 24

Introduction
RepaintManager

● Controls Swing component’s repainting
● double buffering, repaint() coalescing

● One RepaintManager for all components
● Can be changed by a programmer at any time

● public static void
setCurrentManager(RepaintManager)

● Can be used to force child components
to repaint with their container

2007 JavaOneSM Conference | Session TS-3414 | 25

Custom implementation
RepaintManager
RepaintManager.setCurrentManager(new MyRepaintManager());
JButton b = new JButton("Surprise!")panel.add(b);

2007 JavaOneSM Conference | Session TS-3414 | 26

Custom implementation
RepaintManager
class MyRepaintManager extends RepaintManager {
 // This can be optimized public void addDirtyRegion(JComponent c, int x, int y, int w, int h) {
 JComponent parent = (JComponent) SwingUtilities.getAncestorOfClass(MyPanel.class,c);
 // Child is repainted, repaint the whole parent if (parent != null) { super.markCompletelyDirty(parent); } else { super.addDirtyRegion(c, x, y, w, h); } }}

2007 JavaOneSM Conference | Session TS-3414 | 27

Summary
RepaintManager

● Pros
● Does not affect any component’s state
● Easy to use

● Cons
● Conflicts with another custom RM are possible

if (!(currentManager instanceof MyRepaintManager)) {
 RepaintManager. setCurrentManager(new MyRepaintManager());}

2007 JavaOneSM Conference | Session TS-3414 | 28

Custom RepaintManager
SwingX Project

● JXPanel—a special container which supports
● Translucency

● JXPanel.setAlpha(float)
● Painters API
● Image filtration

● Uses custom RepaintManager
● To make JXPanel repaint with its children

2007 JavaOneSM Conference | Session TS-3414 | 29

Example
SwingX Project
JXPanel panel = new JXPanel();
panel.add(new JButton("JButton"));
frame.add(panel);
panel.setAlpha(.5f);

panel.setBackgroundPainter(new Painter() {
 public void paint(Graphics2D g2,

Object o, int w, int h) {
 g2.setColor(Color.MAGENTA);
 g2.fillRect(0, 0, w, h);
 }
});

2007 JavaOneSM Conference | Session TS-3414 | 30

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 31

Introduction
GlassPane

● The topmost component in a frame
● Transparent—setOpaque(false)
● Invisible by default

2007 JavaOneSM Conference | Session TS-3414 | 32

Custom component
GlassPane

frame.setGlassPane(new CustomGlassPanel());
frame.getGlassPane().setVisible(true);

● Painting over the all components

2007 JavaOneSM Conference | Session TS-3414 | 33

Surprising effect
GlassPane
JButton b = new JButton("Surprise!")panel.add(b);frame.add(panel);
frame.getGlassPane().setVisible(true);

2007 JavaOneSM Conference | Session TS-3414 | 34

GlassPane

● If glassPane is visible then Swing needs
to repaint every component together with it
● Swing repaints a component, starting

from their common ancestor—JRootPane
● GlassPane is a global resource
● Transparent panel inside your component

will work the same way

Points to remember

2007 JavaOneSM Conference | Session TS-3414 | 35

Transparent Panel

● Pros
● Does not affect component’s state

nor any global setting
● Cons

● Additional component in hierarchy

Summary

2007 JavaOneSM Conference | Session TS-3414 | 36

Transparent panel
JXLayer

● JXLayer—a special container, which supports
● Painters API
● Image filtering
● Translucency

● PainterModel.setAlpha(float)
● Non-rectangular components

● MouseEvents filtering

2007 JavaOneSM Conference | Session TS-3414 | 37

Implementation
JXLayer

● It is a component wrapper like JScrollPane
● You have access to the wrapped component’s state

● It does not use glassPane from the frame
● It has its own a transparent panel on the top

● JXLayer.setPainter() allows to completely change
component’s appearance
● JXLayer.paint() delegates all painting to the painter

2007 JavaOneSM Conference | Session TS-3414 | 38

Example
JXLayer
JTextField tf = new JTextField("Hello");
JXLayer<JTextField> layer = new JXLayer<JTextField>(tf); // Apply custom painting layer.setPainter(myPainter);
// Apply mouseEvents filterlayer.setMouseClipShaper(myPainter);
frame.add(layer);

2007 JavaOneSM Conference | Session TS-3414 | 39

Custom painter
JXLayer
class MyPainter extends AbstractPainter<JTextField> {
 public void paint(Graphics2D g2,

JXLayer<JTextField> l) {
 l.paint(g2);
 if ("green".equals(l.getView().getText())) {
 g2.setColor(Color.GREEN);
 g2.fillRect(0, 0, l.getWidth(), l.getHeight());
 }
 }
 public boolean contains(int x, int y,

JXLayer<JTextField> l) {
 return !"break".equals(l.getView().getText());
 }
}

2007 JavaOneSM Conference | Session TS-3414 | 40

DEMO
JXLayer Demo

2007 JavaOneSM Conference | Session TS-3414 | 41

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 42

Introduction
Layering in UI Delegates

● UI delegates—classes responsible for painting
Swing components
● JPanel—PanelUI delegate [*]
● JButton—ButtonUI delegate [*]
● …(41 different UI delegates)

● Provide flexible control over painting different
visual layers of Swing components

2007 JavaOneSM Conference | Session TS-3414 | 43

Example—how is a button painted?
Layering in UI Delegates

update()

paintBorder() [*]

paintComponent(
)

paint()

paintIcon()
paintText()
paintFocus()

paintChildren()
[*]

paint()

JComponent ButtonUI

2007 JavaOneSM Conference | Session TS-3414 | 44

Layering in UI Delegates

● Repaint managers, glass pane and custom
components—much higher level

● UI delegate can put painting code
● After icon painting
● But before text painting

● Opens the field to a wide array of effects
● Ghost images/springs
● Ripples
● …

Alternatives and possibilities

2007 JavaOneSM Conference | Session TS-3414 | 45

Ghosting Effects

● Problem—UIs are not “live” enough
● Moving the mouse over a button (rollover)
● Pressing a button

● Solution—use spring/ghost effects for richer
visual indications

Introduction

2007 JavaOneSM Conference | Session TS-3414 | 46

DEMO
Ghosting Effects Demo

2007 JavaOneSM Conference | Session TS-3414 | 47

Painting sequence
Ghosting Effects

2007 JavaOneSM Conference | Session TS-3414 | 48

Details
Ghosting Effects

● Custom painting code in:
● ButtonUI.paintIcon
● PanelUI.update

● Listener to initiate
the animations

update()

paintIcon()
paintText()
paintFocus()

paint()

2007 JavaOneSM Conference | Session TS-3414 | 49

Eye candy
Ghosting Effects

Icon ghosting over multiple
components

Press ghosting over multiple
components

Multiple icon and press ghostings

2007 JavaOneSM Conference | Session TS-3414 | 50

Using in look-and-feels
Ghosting Effects

● Available—button rollover (icon) and button press
● Manual changes—API to call
● Automatic changes—Ant tasks to change

compiled UI delegates (bytecode injection)
● Later tested on core Windows LAF and seven

third-party LAFs

2007 JavaOneSM Conference | Session TS-3414 | 51

UI delegates—summary
Ghosting Effects

● Pros
● Minimal changes in the application code
● No need for custom painting code
● Available under multiple look and feels

(use bytecode injection)
● Cons

● Handling “spilling” is in container delegates
● Custom paintComponent implementations

2007 JavaOneSM Conference | Session TS-3414 | 52

Agenda

Advanced Effects
● Custom Components
● Playing With Opacity
● Custom RepaintManager
● GlassPane
● Layering in UI Delegates

Rainbow Demo
Q&A

2007 JavaOneSM Conference | Session TS-3414 | 53

Links

● JXLayer project
● https://swinghelper.dev.java.net/
● Alexander Potochkin’s blog

● http://weblogs.java.net/blog/alexfromsun/
● Laf-Widget project

● http://laf-widget.dev.java.net
● Kirill’s blog

● http://weblogs.java.net/blog/kirillcool/
● SwingX project

● http://swingx.dev.java.net/

2007 JavaOneSM Conference | Session TS-3414 | 54

Q&A
Alexander.Potochkin@sun.com
kirillcool@yahoo.com

2007 JavaOneSM Conference | Session TS-3414 |

TS-3414

Bringing Life to Swing
Desktop Applications
Alexander Potochkin
Sun Microsystems
Kirill Grouchnikov
Amdocs Inc.

