
On the shoulders of giants

Harnessing the Power of Eclipse 
Enterprise Ecosystem

Kirill Grouchnikov



What is he going to talk about?

To show you how 
Eclipse makes you
more productive



Why should I care?

Less code to write, 
test and support



And then you can retire



Amdocs 
Smart Client 
Designer

What is he going to talk about?





Provides familiar 
experience



Immersed in Eclipse



Immersed in Eclipse



Immersed in Eclipse



Immersed in Eclipse



Immersed in Eclipse



Immersed in Eclipse



Provides familiar 
experience

For your users



For your developers

Less code to write, 
test and support



Especially for 
enterprise
solutions



Eclipse – rich 
foundation



DTP ECF

JDT

GMT

AJDT TPTP

GEFVE
WTPEMF

RAP

RCP

WSTJEM



</acronyms>



http://www.eclipse.org/projects/listofprojects.php



Community health - example

http://www.eclipse.org/modeling/emf/project-info/team.php

• Open Canarias
• RedHat
• Zeligsoft
• Puzzle ITC
• Geensys
• Embarcadero
• Okidoo
• IBM
• Oracle
• ES-Computersysteme
• Elver
• FernUniversitaet
• University of Brock



DTP ECF

JDT

GMT

AJDT TPTP

GEFVE
WTPEMF

RAP

RCP

WSTJEM



Our building blocks

• EMF – persistence

• JEM / VE – UI builder

• GEF – editors

• JDT – Java source trees



XML

Java model

Swing frame

Canvas

EMF

JEM

GEF

Putting the pixels on canvas



EMF as the persistence layer



EMF as the persistence layer

Starting with the 
schema definition



EMF as the persistence layer

Generating the 
model classes



EMF as the persistence layer

xml -> java model



xml ↔ java
notifications
validations



JEM proxies

Offscreen Swing JFrame

GEF graphical edit partsCreation and updates 
via JEM proxies

image changes

Java model



GEF - everything is an EditPart

org.eclipse.gef.ui.parts
TreeViewer

org.eclipse.gef.editparts
AbstractGraphicalEditPart



All together now

XML

Java model

Swing frame

Canvas

EMF

JEM

GEF



Java class change

Builder invocation

Java syntax trees

Marker creation

core

JDT

core

UI update

Java-based warnings



Flagging API usage violations



All together now

Java class change

Builder invocation

Java syntax trees

Marker creation

core

JDT

core

UI update



And those are just 
the big pieces



actions builders

dialogs

markers

editors
perspectives

wizards

validations

natures
monitors

help
commands

views jobs



actions builders

dialogs

markers

editors
perspectives

wizards

validations

natures
monitors

help
commands

views jobs



Asynchronous

Background

Queuing

Cancellable

Progress



big pieces
+

small pieces



=



the Eclipse way



The only rule of 
Eclipse way

don’t fight it



=



provide familiar 
experience to 

your users



Our experience

• Reuse as much plumbing as possible

• Reuse as many UI parts as possible

• Use very few synchronous UI operations 

• Reuse as many UI flows as possible

• Decompose into plugins

• Build for extensibility

• Don’t depend on internal code



</dudeTalking>



Q & A

kirillg@amdocs.com
www.pushing-pixels.org

http://www.eclipse.org/documentation/

mailto:kirillg@amdocs.com


Thank you

Image credit: cemre at http://flickr.com/photos/f/637025/ under NC-SA 2.0

http://flickr.com/photos/f/637025/

